THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Это было семь лет назад - 26-го июня 2000 года. На совместной пресс-конференции с участием президента США и премьер-министра Великобритании представители двух исследовательских групп - International Human Genome Sequencing Consortium (IHGSC) и Celera Genomics - объявили о том, что работы по расшифровке генома человека, начавшиеся ещё в 70-х годах, успешно завершены, и черновой его вариант составлен. Начался новый эпизод развития человечества - постгеномная эра.

Что может дать нам расшифровка генома, и стоят ли потраченные средства и усилия достигнутого результата? Фрэнсис Коллинз (Francis S. Collins ), руководитель американской программы «Геном человека», в 2000 году дал следующий прогноз развития медицины и биологии в постгеномную эру:

  • 2010 год - генетическое тестирование, профилактические меры, снижающие риск заболеваний, и генная терапия до 25 наследственных заболеваний. Медсёстры начинают выполнять медико-генетические процедуры. Широко доступна преимплантационная диагностика, активно обсуждаются ограничения в применении данного метода. В США приняты законы для предотвращения генетической дискриминации и соблюдения конфиденциальности. Практические приложения геномики доступны не всем, особенно это чувствуется в развивающихся странах.
  • 2020 год - на рынке появляются лекарства от диабета, гипертонии и других заболеваний, разработанные на основе геномной информации. Разрабатывается терапия рака, прицельно направленная на свойства раковых клеток определенных опухолей. Фармакогеномика становится общепринятым подходом для создания многих лекарств. Изменение способа диагностики психических заболеваний, появление новых способов их лечения, изменение отношения общества к таким заболеваниям. Практические приложения геномики все еще доступны далеко не везде.
  • 2030 год - определение последовательности нуклеотидов всего генома отдельного индивида станет обычной процедурой, стоимость которой менее $1000. Каталогизированы гены, участвующие в процессе старения. Проводятся клинические испытания по увеличению максимальной продолжительности жизни человека. Лабораторные эксперименты на человеческих клетках заменены экспериментами на компьютерных моделях. Активизируются массовые движения противников передовых технологий в США и других странах.
  • 2040 год - Все общепринятые меры здравоохранения основаны на геномике. Определяется предрасположенность к большинству заболеваний (ещё до рождения). Доступна эффективная профилактическая медицина с учетом особенностей индивида. Болезни определяются на ранних стадиях путем молекулярного мониторинга.
    Для многих заболеваний доступна генная терапия. Замена лекарств продуктами генов, вырабатываемыми организмом при ответе на терапию. Средняя продолжительность жизни достигнет 90 лет благодаря улучшению социо-экономических условий. Проходят серьезные дебаты о возможности человека контролировать собственную эволюцию.
    Неравенство в мире сохраняется, создавая напряженность на международном уровне.

Как видно из прогноза, геномная информация в недалеком будущем может стать основой лечения и профилактики множества болезней. Без информации о своих генах (а она умещается на стандарный DVD-диск) человек в будущем сможет вылечить разве что насморк у какого-нибудь целителя в джунглях. Это кажется фантастикой? Но когда-то такой же фантастикой была поголовная вакцинация от оспы или интернет (заметьте, в 70-х его еще не существовало)! В будущем генетический код ребенка будут выдавать родителям в роддоме. Теоретически, при наличии такого диска, лечение и предотвращение любых недугов отдельно взятого человека станет сущим пустяком. Профессиональный врач сможет в предельно сжатые сроки поставить диагноз, назначить эффективное лечение, и даже определить вероятность появления разных болезней в будущем. К примеру, современные генетические тесты уже позволяют точно определить степень предрасположенности женщины к раку груди. Почти наверняка, лет через 40–50 ни один уважающий себя врач без генетического кода не захочет «лечить вслепую» - подобно тому, как сегодня хирургия не может обойтись без рентгеновского снимка.

Давайте зададимся вопросом - а достоверно ли сказанное, или, может быть, в действительности всё будет наоборот? Смогут ли люди наконец победить все болезни и придут ли они ко всеобщему счастью? Увы. Начнем с того, что Земля маленькая, и счастья на всех не хватит. По правде сказать, его не хватит даже для половины населения развивающихся стран. «Счастье» предназначено в основном для государств, развитых в плане науки, в частности - наук биологических. Например методика, с помощью которой можно «прочесть» генетический код любого человека, уже давно запатентована. Это отлично отработанная автоматизированная технология - правда, дорогостоящая и очень тонкая. Хочешь, покупай лицензию, а хочешь - придумывай новую методику. Только вот денег на подобную разработку хватит далеко не у всех стран! В итоге ряд государств будет обладать медициной, существенно опережающей уровень остального мира. Естественно, в слаборазвитых странах Красным Крестом будут строиться благотворительные больницы, госпитали и геномные центры. И постепенно это приведет к тому, что генетическая информация пациентов развивающихся стран (которых большинство), сосредоточится у двух-трех держав, финансирующих эту благотворительность. Что можно сделать, имея такую информацию - даже представить трудно. Может, и ничего страшного. Однако возможен и другой исход. Битва за приоритет, сопровождавшая секвенирование генома, наглядно подтверждает важность доступности генетической информации. Давайте кратко вспомним некоторые факты из истории программы «Геном человека».

Противники расшифровки генома считали поставленную задачу нереальной, ведь ДНК человека в десятки тысяч раз длиннее молекул ДНК вирусов или плазмид. Главный аргумент против был: «проект потребует миллиарды долларов, которых недосчитаются другие области науки, поэтому геномный проект затормозит развитие науки в целом. А если все-таки деньги найдутся и геном человека будет расшифрован, то полученная в результате информация не оправдает затрат... » Однако Джеймс Уотсон, один из первооткрывателей структуры ДНК и идеолог программы тотального прочтения генетической информации, остроумно парировал: «лучше не поймать большую рыбу, чем не поймать маленькую » , . Аргумент учёного был услышан - проблему генома вынесли на обсуждение в конгресс США, и в итоге была принята национальная программа «Геном человека».

В американском городе Бетесда, что недалеко от Вашингтона, находится один из координационных центров HUGO (HUman Genome Organization ). Центр координирует научную работу по теме «Геном человека» в шести странах - Германии, Англии, Франции, Японии, Китае и США. В работу включились учёные из многих стран мира, объединенные в три команды: две межгосударственные - американская Human Genome Project и британская из Wellcome Trust Sanger Institute - и частная корпорация из штата Мериленд, включившаяся в игру чуть позже, - Celera Genomics . Кстати, это пожалуй первый случай в биологии, когда на таком высоком уровне частная фирма соревновалась с межгосударственными организациями.

Борьба происходила с использованием колоссальных средств и возможностей. Как отмечали некоторое время назад российские эксперты, Celera стояла на плечах у программы «Геном Человека», то есть использовала то, что уже было сделано в рамках глобального проекта. Действительно, Celera Genomics подключилась к программе не сначала, а когда проект уже шёл полным ходом. Однако специалисты из Celera усовершенствовали алгоритм секвенирования. Кроме того, по их заказу был построен суперкомпьютер, который позволял складывать выявляемые «кирпичики» ДНК в результирующую последовательность быстрее и точнее. Конечно, все это не давало компании Celera безоговорочного преимущества, однако считаться с ней как с полноправным участником гонки заставило.

Появление Celera Genomics резко повысило напряженность - те, кто был занят в государственных программах, почувствовали жёсткую конкуренцию. Кроме того, после создания компании остро встал вопрос об эффективности использования государственных капиталовложений. Во главе Celera стал профессор Крейг Вентер (Craig Venter ) , который имел огромный опыт научной работы по государственной программе «Геном человека». Именно он и заявил, что все публичные программы малоэффективны и что в его фирме геном секвенируют быстрее и дешевле. А тут появился ещё один фактор - спохватились крупные фармацевтические компании. Дело в том, что если вся информация о геноме окажется в открытом доступе, они лишатся интеллектуальной собственности, и нечего будет патентовать. Озабоченные этим, они вложили миллиарды долларов в Celera Genomics (с которой, вероятно, было проще договориться). Это еще более укрепило её позиции. В ответ на это коллективам межгосударственного консорциума срочно пришлось повышать эффективность работ по расшифровке генома. Сначала работа шла несогласованно, но потом были достигнуты определенные формы сосуществования - и гонка начала наращивать темп.

Финал был красивым - конкурирующие организации по взаимной договоренности одновременно объявили о завершении работ по расшифровке генома человека , . Произошло это, как мы уже писали - 26 июня 2000 года. Но разница во времени между Америкой и Англией вывела на первое место США.

Рисунок 1. «Гонка за генóм», в которой участвовали межгосударственная и частная компании, формально завершилась «ничьей»: обе группы исследователей опубликовали свои достижения практически одновременно. Руководитель частной компании Celera Genomics Крейг Вентер опубликовал свою работу в журнале Science в соавторстве с ~270 учёными, работавшими под его началом . Работа, выполненная международным консорциумом по секвенированию человеческого генома (IHGSC), опубликована в журнале Nature , и полный список авторов насчитывает около 2800 человек, работавших в почти трёх десятках центров по всему миру .

Исследования в сумме продлились 15 лет. Создание первого «чернового» варианта генома человека обошлось в 300 миллионов долларов. Однако на все исследования по этой теме, включая сравнительные анализы и решение ряда этических проблем, было выделено в сумме около трех миллиардов долларов. Celera Genomics вложила примерно столько же, правда, она истратила их всего за шесть лет. Цена колоссальная, но эта сумма ничтожна в сравнении с той выгодой, которую получит страна-разработчик от ожидаемой вскоре окончательной победы над десятками серьезных заболеваний. В начале октября 2002 года в интервью «Ассошиэйтед пресс» президент Celera Genomics Крейг Вентер заявил, что одна из его некоммерческих организаций планирует заняться изготовлением компакт-дисков, содержащих максимум информации о ДНК клиента. Предварительная стоимость такого заказа - более 700 тысяч долларов. А одному из первооткрывателей структуры ДНК - доктору Джеймсу Уотсону - уже в этом году были подарены два DVD-диска с его геномом общей стоимостью 1 млн. долларов , - как видим, цены падают. Так, вице-президент фирмы 454 Life Sciences Майкл Эгхолм (Michael Egholm ) сообщил , что в скором времени компания сможет довести цену расшифровки до 100 тыс. долларов.

Широкая известность и масштабное финансирование - палка о двух концах. С одной стороны, за счет неограниченных средств работа продвигается легко и быстро. Но с другой стороны, результат исследований должен получиться таким, каким его заказывают. К началу 2001 года в геноме человека со стопроцентной достоверностью было идентифицировано больее 20 тыс. генов. Эта цифра оказалось в три раза меньше, чем было предсказано всего за два года до этого. Вторая команда исследователей из Национального института геномных исследований США во главе с Френсисом Коллинсом независимым способом получила те же результаты - между 20 и 25 тыс. генов в геноме каждой человеческой клетки. Однако неопределенность в окончательные оценки внесли два других международных совместных научных проекта. Доктор Вильям Хезелтайн (руководитель фирмы Human Genome Studies ) настаивал , что в их банке содержится информация о 140 тыс. генов. И этой информацией он не собирается пока делиться с мировой общественностью. Его фирма вложила деньги в патенты и собирается зарабатывать на полученной информации, поскольку она относится к генам широко распространенных болезней человека. Другая группа заявила о 120 тыс. идентифицированных генов человека и также настаивала, что именно эта цифра отражает общее число генов человека.

Тут необходимо уточнить, что эти исследователи занимались расшифровкой последовательности ДНК не самого генома, а ДНК-копий информационных (называемых также матричными) РНК (иРНК или мРНК). Другими словами, исследовался не весь геном, а только та его часть, что перекодируется клеткой в мРНК и направляет синтез белков. Поскольку один ген может служить матрицей для производства нескольких различных видов мРНК (что определяется многими факторами: тип клетки, стадия развития организма и т. д.), то и суммарное число всех различных последовательностей мРНК (а это именно то, что запатентовала Human Genome Studies ) будет значительно бóльшим. Скорее всего, использовать это число для оценки количества генов в геноме просто некорректно.

Очевидно, что наспех «приватизированная» генетическая информация будет в ближайшие годы тщательно проверяться, пока точное число генов станет, наконец, общепринятым. Но настораживает тот факт, что в процессе «познания» патентуется вообще все, что только можно запатентовать. Тут даже не шкура не убитого медведя, а вообще все, что находилось в берлоге, было поделено! Кстати, на сегодня дебаты сбавили обороты, и геном человека официально насчитывает только 21667 генов (версия NCBI 35 , датированная октябрём 2005 года). Следует отметить, что пока большая часть информации всё-таки остаётся общедоступной. Сейчас существуют базы данных, в которых аккумулирована информация о структуре генома не только человека, но и геномов многих других организмов (например, EnsEMBL). Однако попытки получить исключительные права на использование каких-либо генов или последовательностей в коммерческих целях всегда были, есть сейчас и будут предприниматься впредь.

На сегодня основные цели структурной части программы уже в основном выполнены - геном человека почти полностью прочитан. Первый, «черновой» вариант последовательности, опубликованный в начале 2001 года , был далек от совершенства. В нём отсутствовало приблизительно 30% последовательности генома в целом, из них около 10% последовательности так называемого эухроматина - богатых генами и активно экспрессирующихся участков хромосом. Согласно последним подсчётам, эухроматин составляет примерно 93,5% от всего генома . Оставшиеся же 6,5% приходятся на гетерохроматин - эти участки хромосом бедны генами и содержат большое количество повторов, которые представляют серьезные трудности для ученых, пытающихся прочесть их последовательность . Более того, считается, что ДНК в гетерохроматине находится в неактивном состоянии и не экспрессируется. (Этим можно объяснить такое «невнимание» ученых к оставшимся «малым» процентам человеческого генома.) Но даже имевшиеся на 2001 год «черновые» варианты эухроматиновых последовательностей содержали большое количество разрывов, ошибок и неверно соединенных и ориентированных фрагментов. Нисколько не умаляя значения для науки и ее приложений появление этого «черновика», стоит однако отметить, что использование этой предварительной информации в крупномасштабных экспериментах по анализу генома в целом (например, при исследовании эволюции генов или общей организации генома) выявило множество неточностей и артефактов. Поэтому дальнейшая и не менее кропотливая работа, «последние вершки», была абсолютно необходима.

Рисунок 2. Слева: Автоматизированная линия подготовки образцов ДНК для секвенирования в Центре Геномных исследований института Уайтхеда. Справа: Лаборатория в , заполненная автоматами для высокопроизводительной расшифровки последовательностей ДНК.

Завершение расшифровки заняло еще несколько лет и привело почти что к удвоению стоимости всего проекта. Однако уже в 2004 г. было объявлено, что эухроматин прочитан на 99% с общей точностью одна ошибка на 100 000 пар оснований. Количество разрывов уменьшилось в 400 раз. Аккуратность и полнота прочтения стала достаточной для эффективного поиска генов, отвечающих за то или иное наследственное заболевание (например, диабет или рак груди). Практически это означает, что исследователям больше не надо заниматься трудоемким подтверждением последовательностей генов, с которыми они работают, так как можно полностью положиться на определенную и доступную каждому последовательность всего генома.

Таким образом, изначальный план проекта был значительно перевыполнен. Помогло ли это нам в понимании того, как устроен и работает наш геном? Безусловно. Авторы статьи в Nature , в которой был опубликован «окончательный» (на 2004 год) вариант генома , провели с его использованием несколько анализов, которые были бы абсолютно бессмысленны, имей они на руках только «черновую» последовательность. Оказалось, что более тысячи генов «родились» совсем недавно (по эволюционным меркам, конечно) - в процессе удвоения исходного гена и последующего независимого развития дочернего гена и гена-родителя. А чуть меньше сорока генов недавно «умерли», накопив мутации, сделавшие их совершенно неактивными. Другая статья, вышедшая в том же номере журнала Nature , прямо указывает на недостатки метода, использованного учеными из Celera . Следствием этих недостатков стали пропуски многочисленных повторов в прочитанных последовательностях ДНК и, как результат, недооценённая длина и сложность всего генома. Чтобы не повторять подобных ошибок в будущем, авторы статьи предложили использовать гибридную стратегию - комбинацию высокоэффективного подхода, использовавшегося учеными из Celera , и сравнительно медленного и трудоемкого, но и более надежного метода, применявшегося исследователями из IHGSC.

Куда дальше будет направлено беспрецедентное исследование «Геном человека»? Кое-что об этом можно сказать уже сейчас. Основанный в сентябре 2003 года международный консорциум ENCODE (ENCyclopaedia Of DNA Elements ) поставил своей целью обнаружение и изучение «управляющих элементов» (последовательностей) в геноме человека. Действительно, ведь 3 млрд. пар оснований (а именно такова длина генома человека) содержат всего лишь 22 тыс. генов, разбросанных в этом океане ДНК непонятным для нас образом. Что управляет их экспрессией? Зачем нам такой избыток ДНК? Действительно ли он является балластом, или же все-таки проявляет себя, обладая какими-то неизвестными функциями ?

Для начала, в качестве пилотного проекта, ученые из ENCODE «пристально вгляделись» в последовательность, составляющую 1% от генома человека (30 млн. пар оснований), используя новейшее оборудование для исследований в молекулярной биологии. Результаты были опубликованы в апреле нынешнего года в Nature . Оказалось, что бóльшая часть генома человека (в том числе участки, считавшиеся ранее «молчащими») служит матрицей для производства различных РНК, многие из которых не являются информационными, поскольку не кодируют белков. Многие из этих «некодирующих» РНК перекрываются с «классическими» генами (участками ДНК, кодирующими белки). Неожиданным результатом было и то, как регуляторные участки ДНК были расположены относительно генов, экспрессией которых они управляли. Последовательности многих из этих участков мало изменялись в процессе эволюции, в то время как другие участки, считавшиеся важными для управления клеткой, мутировали и изменялись в процессе эволюции с неожиданно высокой скоростью . Все эти находки поставили большое количество новых вопросов, ответы на которые можно получить лишь в дальнейших исследованиях.

Другая задача, решение которой станет делом недалекого будущего, - определение последовательности оставшихся «малых» процентов генома, составляющих гетерохроматин, т. е. бедных генами и богатых повторами участков ДНК, необходимых для удвоения хромосом в процессе деления клетки. Наличие повторов делает задачу расшифровки этих последовательностей неразрешимой для существующих подходов, и, следовательно, требует изобретения новых методов. Поэтому не удивляйтесь, когда году в 2010 выйдет очередная статья, объявляющая об «окончании» расшифровки генома человека - в ней будет рассказано о том, как был «взломан» гетерохроматин.

Конечно, сейчас в нашем распоряжении имеется лишь некий «усредненный» вариант человеческого генома. Образно говоря - мы сегодня имеем лишь самое общее описание конструкции автомобиля: мотор, ходовая часть, колёса, руль, сиденья, краска, обивка, бензин с маслом и т. д. Ближайшее рассмотрение полученного результата свидетельствует о том, что впереди - годы работ по уточнению наших знаний по каждому конкретному геному. Программа «Геном человека» не прекратила свое существование, она лишь меняет ориентацию: от структурной геномики осуществляется переход к геномике функциональной, предназначенной установить, как управляются и работают гены. Более того, все люди на уровне генов отличаются так же, как одни и те же модели автомобилей отличаются различными вариантами исполнения одних и тех же агрегатов. Не только отдельные основания в последовательностях генов двух разных людей могут отличаться, но и количество копий крупных фрагментов ДНК, порой включающих в себя несколько генов, может сильно варьировать. А это означает, что на передний план выходят работы по детальному сравнению геномов, скажем, представителей различных человеческих популяций, этнических групп, и даже здоровых и больных людей. Современные технологии позволяют быстро и точно проводить такие сравнительные анализы, а ведь еще лет десять назад об этом никто и не мечтал. Изучением структурных вариаций человеческого генома занимается очередное международное научное объединение . В США и Европе значительные средства выделяются на финансирование биоинформатики - молодой науки, возникшей на стыке информатики, математики и биологии, без которой никак не разобраться в безграничном океане информации, накопленном в современной биологии. Биоинформационные методы помогут нам ответить на многие интереснейшие вопросы - «как происходила эволюция человека?», «какие гены определяют те или иные особенности человеческого организма?», «какие гены ответственны за предрасположенность к болезням?» Знаете, как говорят англичане: “This is the end of the beginning ” - «Это конец начала». Вот именно эта фраза точно отражает нынешнюю ситуацию . Начинается самое главное и - я совершенно уверен - самое интересное: накопление результатов, их сравнение и дальнейший анализ.

«...Сегодня мы выпускаем в свет первое издание „Книги жизни“ с нашими инструкциями , - сказал в эфире телеканала «Россия» Фрэнсис Коллинз. - Мы будем обращаться к нему десятки, сотни лет. И уже скоро люди зададутся вопросом, как они могли обходиться без этой информации ».

Другую точку зрения можно проиллюстрировать, процитировав академика Кордюма В. А.:

«...Надежды же на то, что новая информация о функциях генома будет полностью открытой, чисто символические. Можно прогнозировать, что возникнут (на базе уже имеющихся) гигантские центры, которые смогут все данные соединить в одно связное целое, некую электронную версию Человека и реализовывать её практически - в гены, белки, клетки, ткани, органы и что угодно ещё. Но во что? Угодное кому? Для чего? В процессе работ по программе „геном человека“ стремительно совершенствовались методы и аппаратура для определения первичной последовательности ДНК. В крупнейших центрах это превратилось в некое подобие заводской деятельности. Но даже на уровне лабораторных индивидуальных приборов (вернее их комплексов) уже создано столь совершенное оборудование, что оно способно определить за три месяца такую по объему последовательность ДНК, которая равна всему геному человека. Не удивительно, что возникла (и тут же начала стремительно реализоваться) идея определения геномов индивидуальных людей. Безусловно, это очень интересно - сравнить отличия разных индивидуумов на уровне их первоосновы. Польза от такого сравнения тоже несомненная. Можно будет установить, у кого имеются какие нарушения в геноме, прогнозировать их последствия и устранить то, что может привести к болезням. Здоровье будет гарантированным, да и жизнь продлится весьма существенно. Это с одной стороны. С другой же стороны всё совсем не очевидно. Получить и проанализировать всю наследственность индивидуума означает получение полного, исчерпывающего биологического досье на него. Оно, при желании того, кто его знает, позволит столь же исчерпывающе делать с человеком всё что угодно. По уже известной цепочке: клетка - молекулярная машина; человек состоит из клеток; клетка во всех своих проявлениях и во всём диапазоне возможных ответов, записана в геноме; с геномом можно ограниченно уже и сегодня манипулировать, а в обозримом будущем вообще манипулировать практически как угодно... »

Однако, наверное, пугаться таких мрачных прогнозов еще рано (хотя знать о них, безусловно, нужно). Для их осуществления надо полностью перестраивать многие социальные и культурные традиции. Очень хорошо по этому поводу сказал в интервью доктор биологических наук Михаил Гельфанд, и. о. заместителя директора Института проблем передачи информации РАН: «...если у вас есть, предположим, один из пяти генов, предопределяющих развитие шизофрении, то что может случиться, если эта информация - ваш геном - попала в руки вашего потенциального работодателя, который ничего в геномике не понимает! (и как следствие - вас на работу могут не принять, посчитав это рискованным; и это не смотря на то, что шизофрении у вас нет и не будет - прим. автора.) Другой аспект: с появлением индивидуализированной медицины, основанной на геномике, полностью изменится страховая медицина. Ведь одно дело - предусматривать риски неизвестные, а другое дело - совершенно определенные. Если честно, то все западное общество в целом, не только российское, к геномной революции сейчас не готово...» .

Действительно, чтобы разумно пользоваться новой информацией, надо ее понимать. А для того чтобы понять геном - не просто прочитать, этого далеко не достаточно, - нам потребуются десятилетия. Слишком уж сложная картина вырисовывается, и чтобы осознать её, нам надо будет поменять многие стереотипы. Поэтому на самом деле расшифровка генома ещё продолжается и будет продолжаться. И будем ли мы стоять в стороне или станем, наконец, активными участниками этой гонки - зависит от нас.

Литература

  1. Киселёв Л. (2001). Новая биология началась в феврале 2001 года . «Наука и Жизнь» ;
  2. Киселёв Л. (2002). Вторая жизнь генома: от структуры к функции . «Знание–Сила» . 7 ;
  3. Ewan Birney, The ENCODE Project Consortium, John A. Stamatoyannopoulos, Anindya Dutta, Roderic Guigó, et. al.. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project . Nature . 447 , 799-816;
  4. Lincoln D. Stein. (2004). Human genome: End of the beginning . Nature . 431 , 915-916;
  5. Гельфанд М. (2007). Постгеномная эра . «Коммерческая биотехнология» .

Сравнение десятков тысяч человеческих геномов показало, что абсолютно необходимых генов насчитывается 3230.

В биологии есть понятие минимального генома - минимального набора генов, без которых организм не выживет. Конечно, к этому понятию есть масса вопросов. Например, о каком именно организме идёт речь? Можно взять одноклеточную бактерию, а можно очень и очень многоклеточного человека – по образу жизни они настолько разные, что и набор необходимых генов у них, очевидно, тоже будет разным.

Х-хромосома человека под электронным микроскопом. (Фото Dr. Gopal Murti / Visuals Unlimited / Corbis.)

Человеческие хромосомы в момент клеточного деления. (Фото Lester V. Bergman / CORBIS.)

Опять же, есть пункт «образа жизни». При каких условиях минимальный геном будет достаточен? Та же бактерия может попасть в исключительно благоприятную питательную среду, с идеальными показателями температуры, содержания солей, питательных веществ и т. д., а может, наоборот, перейти на голодный паёк, да ещё испытать на себе повышение солёности или кислотности. И набор необходимых для выживания генов в обоих случаях будет разный. Поэтому при обсуждении минимального генома часто оговариваются, что речь идёт именно о благоприятных условиях жизни.

Вообще мысль о том, что одни гены нужнее других, возникла сравнительно давно: так, ещё в 1996 году Аркадий Мушегян и Евгений Кунин оценили минимальный необходимый геном для бактериальной клетки в 256 генов; в 2004 году другими исследователями был предложен набор в 204 гена. Минимальный геном строили на сравнительном анализе нескольких бактериальных геномов; если же говорить о конкретном организме, то здесь неизбежно приходится вспомнить о бактерии Mycoplasma genitalium , возбудителе заболеваний мочеполовой системы человека – у неё насчитывается всего 517 генов, из которых 482 кодируют белки; жизненно важных из них 382. Геном микоплазмы некоторое время считался самым маленьким, пока не были прочитаны ДНК ещё нескольких микроорганизмов, которые могут существовать только в виде симбионтов внутри клеток хозяина. Пока что чемпионом здесь является бактерия Carsonella , обитающая в клетках листоблошек – её геном содержит всего 182 гена с белковой информацией.

Бактерии бактериями, а если попробовать оценить минимальное число генов у человека? Именно это попыталась сделать исследовательская группа под руководством Дэниэла Макартура (Daniel MacArthur ) из Института Броуда. Отделить важные гены от неважных можно, если предположить, что важные гены будут у разных людей полностью или почти полностью похожи друг на друга. Известно, что в генах могут проскакивать небольшие изменения в последовательностях, по которым одна особь отличается от другой; такие изменения могут вообще не сказываться на работе белка, кодируемого геном, или же сказываться незначительно. Но в случае важных генов их модификации с очень большой вероятностью плохо отразятся на организме, и он вряд ли выживет. Что до неважных генов, то они могут в определённых условиях позволить себе работать не очень хорошо, не подвергая нашу жизнь опасности.

И вот исследователи взялись сравнить между собой гены 60 тысяч человек (стоит уточнить, что сравнивали лишь экзоны, то есть те участки генов, которые несут информацию о последовательности аминокислот в белках). В сумме удалось найти 10 млн различий.

С другой стороны, для каждого гена оценивали теоретическое количество вариантов, которые бы он получил, если бы они возникали в нём случайно и так и оставались. Результат теоретической прикидки сравнивали с тем, что получили в ходе сравнительного анализа реальных последовательностей ДНК (взятых, напомним, у 60 тыс. человек). Как и ожидалось, какие-то гены легко «относились» к вариациям в собственной последовательности, другие же, напротив, старались от них избавиться. Посчитав гены, в которых изменений не было или почти не было, авторы работы получили цифру 3230 – именно столько человеческих генов не могут позволить себе никаких, даже малейших изменений в функционировании. То есть, можно сказать, что эти 3230 и есть жизненно необходимый генетический набор человека. (Напомним, что всего же человеческий геном насчитывает, по разным оценкам, от 20 до 25 тыс. генов.)

Очевидно, модификации в последовательностях таких генов сразу же приводят к каким-то тяжёлым расстройствам либо ещё во время эмбрионального развития, так что человек даже не успевает появиться на свет, либо уже после рождения, в детстве или ранней юности (человек умирает, не успев родить детей). Действительно, про 20% из описанных 3230 известно, что они связаны с разными заболеваниями, однако функцию большинства остальных генов ещё предстоит выяснить. Полученные результаты можно использовать в медицинских целях: очевидно, что поиск генетических причин тех или иных заболеваний лучше всего начинать именно с «минимального генетического набора».

Новые данные пока что существуют в виде препринта, статьи с ними пока нет. Возможно, что к моменту официальной публикации, после всех замечаний рецензентов, число генов как-то изменится. Впрочем, оно может измениться и так: кто знает, вдруг, если мы возьмём ещё больший набор последовательностей для анализа, то список необходимых генов увеличится? Не будем забывать и о том, что наш геном, как и любой другой, состоит не только из кодирующих последовательностей (то есть тех, что непосредственно несут информацию о белках) – в ДНК существует масса регуляторных участков, промоторов, энхансеров, инсуляторов, участков, кодирующих регуляторные РНК, и среди них, безусловно, есть жизненно важные.

Кстати говоря, одна из задач определения минимального генома – создание организма в буквальном смысле с нуля. Иными словами, можем ли мы, зная генетический набор минимального генома, создать живую бактериальную клетку, пусть и требующую для себя исключительно благоприятных условий? С бактериями, между прочим, это уже пытаются проделать; что ж, когда-нибудь дело дойдёт и до человека.

С развитием естественных наук, которое произошло в начале 20 века, удалось выявить принципы наследственности. В этот же период возникли новые термины, описывающие, что такое гены и геном человека. Геном называют единицу наследственной информации, отвечающую за формирование в организме носителя какого-либо свойства. В живой природе именно передача этой информации является основой всего процесса размножения. Этот термин, как и само определение, что такое гены, впервые был использован ботаником Вильгельмом Йогансеном в 1909 году.

Структура гена

На сегодняшний день установлено, что гены - это отдельные участки ДНК - дезоксирибонуклеиновой кислоты. Каждый ген отвечает за передачу в организме человека данных о строении РНК (рибонуклеиновой кислоты) или белка. Как правило, в составе гена присутствует несколько участков ДНК. Структуры, которые берут на себя передачу наследственной информации, называют кодирующими последовательностями. Но при этом в ДНК есть и такие структуры, которые влияют на проявление гена. Данные участки называются регуляторными. То есть гены включают кодирующие и регуляторные последовательности, которые в ДНК расположены отдельно друг от друга.

Геном человека

В 1920 году Ганс Винклер ввел такое понятие, как геном. Сначала этот термин использовался для обозначения набора генов непарного одинарного набора хромосом, который присущ биологическому виду. Было такое мнение, что геном целиком восполняет все свойства организма определенного вида. Но в дальнейшем значение этого термина немного изменилось, так как проведенные исследования показали, что такое определение не совсем соответствует истине.

Генетическая информация

Было установлено, что такое гены и то, что в ДНК многих организмов присутствуют не кодирующие ничего последовательности. К тому же часть генетической информации содержится в ДНК, которые расположены вне ядра клетки. Часть генов, отвечающих за кодирование одного и того же признака, может существенно различаться по своей структуре. То есть геномом называют собирательный набор генов, которые содержатся в хромосомах и за их пределами. Он характеризует свойства определенной популяции особей, но при этом генетический набор каждого отдельного организма имеет существенные отличия от его генома.

Что является основой наследственности

В попытках определить, что такое гены, было проведено множество самых различных исследований. Поэтому нельзя однозначно ответить на этот вопрос. Если верить биологическому определению этого термина, то ген - это последовательность ДНК, содержащая информацию об определенном белке. И до недавних пор такого объяснения этого термина было вполне достаточно. Но сейчас установлено, что последовательность, в которой закодирован белок, не всегда является непрерывной. Она может прерываться вкрапленными в нее участками, не несущими никакой информации.

Идентификация гена

Можно идентифицировать ген по группе мутаций, каждая из которых предупреждает создание соответствующего белка. Тем не менее данное утверждение может считаться правильным и касаемо прерывистых генов. Свойства их кластеров в данном случае оказываются гораздо сложнее. Но это утверждение довольно спорное, так как многие гены с прерывистой цепочкой обнаружены в таких ситуациях, когда невозможно провести тщательный генетический анализ. Считалось, что геном довольно постоянен, и какие-либо изменения в его общей структуре происходят лишь в крайних случаях. А конкретно лишь в растянутой эволюционно-временной шкале. Но такое суждение противоречит недавно полученным данным, доказывающим, что в ДНК периодически происходят определенные перестройки, и что есть относительно изменчивые компоненты генома.

Свойства генов, выявленные в работе Менделя

В работе Менделя, а именно в его первом и втором законах, точно сформулировано, что такое гены и каковы их свойства. В первом законе рассматриваются особенности индивидуального гена. В организме присутствуют две копии каждого гена, то есть если говорить языком современности, он диплоиден. Одна из двух копий гена попадает к потомку от родителя через гаметы, то есть передается по наследству. Гаметы, объединяясь, образуют оплодотворенное яйцо (зиготу), которая несет по одной копии от каждого родителя. Следовательно, организм получает одну материнскую копию гена и одну отцовскую.

Двуликий ген старения

Как известно, старение человека объясняется не только накоплением неполадок в организме, но и работой определенных генов, несущих информацию о старении. Сразу возникает вопрос о том, почему в процессе эволюции этот ген сохранился. Зачем он нужен в организме и какую роль играет? Исследования на эту тему были основаны на выведении вида мышей без характерного белка p66Shc. Особи, у которых отсутствовал данный белок, не были склонны к накоплению жировой прослойки, медленнее старели, меньше страдали сдвигами метаболизма, сердечно-сосудистыми заболеваниями и диабетом. Выходит, этот белок является геном, ускоряющим процессы старения. Но такие результаты дали только лабораторные исследования. Потом животные были перенесены в естественные условия обитания, и в результате популяция мутантных особей стала снижаться. По этой причине было принято решение о дальнейшем исследовании, и как итог был подтвержден факт, что «ген старения» имеет большое значение в процессах адаптации организма и отвечает за естественный энергетический обмен в организме животных.

Ричард Докинз - биолог-эволюционист и его «Эгоистичный ген»

Книга, которую написал Ричард Докинз («Эгоистичный ген»), является наиболее популярной книгой по эволюции. В книге задается не совсем типичный угол обзора, показывается, что эволюция, а точнее естественный отбор, происходит в первую очередь на уровне генов. Конечно, сегодня этот факт уже не вызывает сомнения, но в 1976 году такое заявление было весьма новаторским. Мы созданы нашими генами. Все живые существа необходимы для того, чтобы сохранить гены. Мир эгоистичного гена - это мир безжалостной эксплуатации, жесткой конкуренции и обмана.

В новом исследовании показано, что до 20% генов, классифицированных как кодирующие гены (те, которые производят белки, и являются строительными блоками всех живых существ), возможно, не кодируются, поскольку они имеют характеристики некодирующих генов или псевдогенов. Работа , опубликованная в журнале , является результатом международного сотрудничества под руководством автора исследования Майкла Трэса (Michael Tress).

Сколько генов у человека?

Эта работа еще раз подчеркивает сомнения в отношении количества реальных генов, присутствующих в клетках человека через 15 лет после секвенирования генома человека. Последующее сокращение размера генома человека может иметь важные последствия в биомедицине, поскольку количество генов, продуцирующих белки, и их идентификация имеет жизненно важное значение для исследования множества заболеваний, включая рак, сердечно-сосудистые заболевания и т.д.

С момента завершения секвенирования генома человека в 2003 году специалисты со всего мира работали над составлением конечного протеома человека (общее количество белков, генерируемых генами), и генов, которые их производят. Эта задача огромна, учитывая сложность генома человека и тот факт, что у нас около 20 000 отдельных кодирующих генов.

Исследователи проанализировали гены, каталогизированные как кодирование белка в основных эталонных протеомах человека.

Результаты научной работы

При детальном сравнении эталонных протеомов из международного консорциума GENCODE / Ensembl, RefSeq и UniProtKB обнаружило 22 210 кодирующих генов, но только 19 446 из этих генов присутствовали во всех 3 аннотациях.

Когда они проанализировали 2764 гена, которые присутствовали только в одной или двух из этих эталонных аннотаций, они с удивлением обнаружили, что экспериментальные данные предполагают, что почти все эти гены, скорее всего, являются некодирующими генами или псевдогенами . Фактически, эти гены вместе с другими 1470 кодирующими генами, которые присутствуют в трех справочных каталогах, не эволюционировали, как типичные гены, кодирующие белок. Заключение исследования состоит в том, что большинство из этих 4234 генов, вероятно, не кодируют белки.

По словам ученых, исследование уже оправдывает себя.

«Мы смогли подробно проанализировать многие из этих генов, и более 300 генов уже были реклассифицированы как некодирующие» — объясняет Тресс.

Результаты уже включены в новые аннотации генома человека международным консорциумом GENCODE, частью которого являются исследователи CNIO.

Эта работа еще раз подчеркивает сомнения в отношении количества реальных генов, присутствующих в клетках человека через 15 лет после секвенирования генома человека. Хотя самые последние данные показывают, что количество генов, кодирующих человеческие белки, может превышать 20000, Федерико Абаскаль (Federico Abascal, of the Wellcome Trust Sanger Institute in the United Kingdom), автор исследования, из Института Велком Траст Сэнгер (Wellcome Trust Sanger Institute) в Соединенном Королевстве утверждает: «Наши данные свидетельствуют о том, что у людей может быть только 19 000 кодирующих генов, но мы до сих пор подробно не знаем о них».

«Удивительно, что некоторые из этих необычных генов были хорошо изучены и имеют более 100 научных публикаций, основанных на предположении, что ген продуцирует белок».

Выводы

Это исследование показывает, что все еще существует большая неопределенность, поскольку конечное количество кодирующих генов может быть на 2000 больше или 2000 меньше, чем сейчас. Человеческий протеом все еще требуется дополнительно исследовать, особенно учитывая его важность для медицинского сообщества.

МОСКВА, 4 июл — РИА Новости, Анна Урманцева . У кого геном больше? Как известно, одни существа имеют более сложное строение, чем другие, а раз все записано в ДНК, то и это тоже должно быть отражено в ее коде. Получается, человек с его развитой речью обязан быть сложнее маленького круглого червяка. Однако если сравнить нас с червяком по количеству генов, получится примерно то же самое: 20 тысяч генов Caenorhabditis elegans против 20-25 тысяч Homo sapiens.

Еще более обидными для "венца земных созданий" и "царя природы" являются сравнения с рисом и кукурузой — 50 тысяч генов по отношению к человеческим 25.

Впрочем, может, мы не то считаем? Гены — это "коробочки", в которые упакованы нуклеотиды — "буквы" генома. Может, посчитать их? У человека 3,2 миллиарда пар нуклеотидов. А вот японский вороний глаз (Paris japonica) — красивое растение с белыми цветами — имеет в своем геноме 150 миллиардов пар оснований. Получается, что человек должен быть устроен в 50 раз проще какого-то цветка.

А двоякодышащая рыба протоптер (двоякодышащая — обладающая как жаберным, так и легочным дыханием), получается, в 40 раз сложнее, чем человек. Может, все рыбы почему-то сложнее, чем люди? Нет. Ядовитая рыба фугу, из которой японцы готовят деликатес, имеет геном в восемь раз меньше, чем у человека, и в 330 раз меньше, чем у двоякодышащей рыбы протоптер.
Остается посчитать хромосомы — но это еще сильнее запутывает картину. Как может человек по количеству хромосом быть равным ясеню, а шимпанзе — таракану?


С этими парадоксами эволюционные биологи и генетики столкнулись давным-давно. Они были вынуждены признать, что размер генома, в чем бы мы его ни пытались посчитать, поразительно не связан со сложностью устройства организмов. Этот парадокс назвали "загадкой значений С", где С — это количество ДНК в клетке (C-value paradoх, точный перевод — "парадокс величины генома"). И все-таки какие-то корреляции между видами и царствами существуют.

© Иллюстрация РИА Новости. А.Полянина


© Иллюстрация РИА Новости. А.Полянина

Ясно, например, что эукариоты (живые организмы, клетки которых содержат ядро) имеют в среднем геномы больше, чем прокариоты (живые организмы, клетки которых не содержат ядро). Позвоночные животные имеют в среднем геномы больше, чем беспозвоночные. Однако тут есть исключения, которые никто пока не смог объяснить.

Генетики расшифровали ДНК растения, способного пережить атомный взрыв Ученые впервые расшифровали полный геном гинкго – древнейшего современного растения на Земле, первые представители которого появились еще до рождения первых динозавров, во времена звероящеров.

Были предположения, что размер генома связан с продолжительностью жизненного цикла организма. Некоторые ученые утверждали на примере растений, что многолетние виды имеют более крупные геномы, чем однолетние, причем обычно с разницей в несколько раз. А самые маленькие геномы принадлежат растениям-эфемерам, которые проходят полный цикл от рождения до смерти в течение нескольких недель. Этот вопрос сейчас активно обсуждается в научных кругах.

Поясняет ведущий научный сотрудник Института общей генетики им. Н. И. Вавилова Российской академии наук, профессор Техасского агромеханического университета и Гёттингенского университета Константин Крутовский: "Размер генома не связан с продолжительностью жизненного цикла организма! Например, есть виды внутри одного рода, которые имеют одинаковый размер генома, но могут различаться по продолжительности жизни в десятки, если не сотни раз. В целом есть связь размера генома с эволюционной продвинутостью и сложностью организации, но со множеством исключений. В основном размер генома связан с плоидностью (копийностью) генома (причем полиплоиды встречаются и у растений, и у животных) и количеством высокоповторяющейся ДНК (простые и сложные повторы, транспозоны и другие мобильные элементы)".

Генетики "воскресили" кукурузу возрастом в пять тысяч лет Генетики смогли извлечь ДНК из древнейших останков "культурной" кукурузы и восстановить ее геном, указавший на более древние корни любимого растения Никиты Сергеевича Хрущева, чем мы считали раньше.

Есть также ученые, которые придерживаются другой точки зрения на этот вопрос.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама