THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Что такое геном человека? Как давно используется этот термин в науке и , и почему данное понятие имеет такое большое значение в наше время?

Геном человека - совокупность наследственного материала, заключенного в клетке . Он состоит из 23 пар .

Гены – это отдельные части ДНК. Каждый из них отвечает за какой-то признак или часть тела: рост, цвет глаз и т.п.

Когда ученым удастся полностью «расшифровать» записанную на ДНК информацию, люди смогут бороться с теми болезнями, которые передаются по наследству. Более того, возможно тогда удастся решить проблему старения.

Ранее считалось, что количество генов в нашем организме составляет более сотни тысяч. Однако международные исследования последнего времени подтвердили, что в нашем организме приблизительно 28 000 генов. На сегодняшний день из них исследовано только несколько тысяч.

Гены неравномерно распределены по хромосомам. Отчего это так – ученые пока не знают.

Клетки тела все время считывают информацию, которая записана в ДНК. Каждая из них выполняет свою работу: разносит по телу кислород, уничтожает вирусы и и т.п.

Но существуют и особые клетки – половые. У мужчин это сперматозоиды, а у женщин – яйцеклетки. В них содержится не 46 хромосом, а ровно половина – 23.

Когда половые клетки сливаются, в новом организме оказывается полный набор хромосом: половина от отца и половина от матери.

Вот почему дети в чем-то похожи на каждого из своих родителей.

За один и тот же признак обычно отвечают несколько генов. Например, наш рост зависит от 16 единиц ДНК. В то же время некоторые гены влияют сразу на несколько признаков (так, обладатели рыжих волос имеют светлый оттенок кожи и веснушки).

Цвет глаз у человека определяется двумя генами, и тот, который отвечает за карие глаза – доминантный. Это означает, что у него больше шансов проявиться при «встрече» с другим геном.

Поэтому у кареглазого папы и голубоглазой мамы малыш, скорее всего, будет кареглазым. Темные волосы, густые брови, ямочки на щеках и подбородке – тоже доминантные признаки.

А вот ген, отвечающий за голубые глаза – рецессивный. Такие гены проявляются значительно реже, если есть у обоих родителей.

Надеемся, что теперь вы знаете, что собой представляет геном человека. Конечно, в ближайшее время наука может удивить нас новыми открытиями в этой области. Но это дело будущего.

Если вам нравятся интересные факты обо всем – подписывайтесь на в любой социальной сети. С нами всегда интересно!

Понравился пост? Нажми любую кнопку.

В этом разделе описываются генетические характеристики различных живых организмов.

Общие сведения

С парадокс - длина геномов не зависит от сложности организма.
Сравнительные размеры геномов в разных группах организмов.

Размеры геномов и количество генов

Объект размер генома, пн
Микоплазмы 10 4 -10 6
Эубактерии (E.coli) 10 5 -10 7
Грибы (2-5)x10 7
Вид Число генов Длина генома, пн
Eubacteria
Mycoplasma genitalium 477 580.070
Synechocystis sp. 3168 3573 тыс.
E.coli 4280 4.639.221
Helicobacter pylori 1590 1667 тыс
Bacillus subtilis 4099 4214 тыс
Aquifex aelolicus 1544 1551 тыс
Micobacterium tuberculosis 4402 4447 тыс
Treponema pallidum 1041 1138 тыс
Rickettsia prowazekii 834 1111 тыс
Thermotoga maritima 1877 1860 тыс
Archaea
Methanococcus sannaschii 1750 1664 тыс
Archaeoglobus fulgidus 2493 2178 тыс
Aeropyrum pernix 2620 669 тыс
Eucaryotes
Saccharomyces cerevisiae ~6300 12.069 тыс
Arabidopsis thaliana ~26000 142.000 тыс
Caenorhabditis elegans ~19000 97.000 тыс
Drosophila melanogaster ~14000 137.000 тыс
X.laevis
Homo sapiens ~30000 3.200.000 тыс
Водоросли (5-7)x10 Черви ~10 8 Моллюски 5x10 8 -5x10 9 Насекомые 10 8 -5x10 9 Ракообразные ~10 9 Иглокожие 2x10 8 -2x10 9 Рыбы 3x10 8 -10 10 Амфибии 7x10 8 -7x10 10 Рептилии (2-3)10 9 Птицы 10 9 Млекопитающие 3x10 9 Цветковые растения 2x10 8 -10 11

Геном эукариот

Геном человека

У человека 23 пары хромосом, 22 аутосомы и 1 пара половых XX (женский пол) или XY (мужской пол).
Гаплоидный геном человека включает более 3 биллионов пар оснований ДНК, общей длинной приблизительно 1,8 м. Полный объем информации записанной в ДНК человека занимает около 750 мегабайт.
Гаплоидный геном человека содержит около 20,000–25,000 генов кодирующих белки.
Около 1.5% генома белок кодирующая, в то время как остальная ДНК включает регуляторные последовательности, интроны, РНК кодирующие последовательности, различные повторы и т.д.
~8% генома приходится на инактивированные последовательности некогда функционировавших ретровирусов HERV (Human endogenous retrovirus), самым молодым из которых, HERV-K, около 5-ти миллионов лет.
Французские исследователи восстановили последовательность одного из ретровирусов семейства HERV-K, содержащиеся в геноме. В клетках линии 239Т происходила транскрипция вирусной ДНК и продукция вирусных частиц. Более того, сам вирус, получивший название Phoenix, оказался способным самостоятельно осуществлять полный ретровирусный цикл от заражения клетки до интеграции в геном и сборки вирусных частиц. В некоторых опухолях, таких как тератокарцинома и меланома, экспрессируются отдельные белки HERV. Этого не достаточно для сборки полноценного вируса - слишком много мутаций. Однако, "воскрешение" полноценного вируса вполне может произойти за счет спонтанной рекомбинации - принципиальная возможность этого подтверждается результатами французских ученых.

Хромосома Генов Длина, пн Секвенировано
1 3,148 247,200,000 224,999,719
2 902 242,750,000 237,712,649
3 1,436 199,450,000 194,704,827
4 453 191,260,000 187,297,063
5 609 180,840,000 177,702,766
6 1,585 170,900,000 167,273,992
7 1,824 158,820,000 154,952,424
8 781 146,270,000 142,612,826
9 1,229 140,440,000 120,312,298
10 1,312 135,370,000 131,624,737
11 405 134,450,000 131,130,853
12 1,330 132,290,000 130,303,534
13 623 114,130,000 95,559,980
14 886 106,360,000 88,290,585
15 676 100,340,000 81,341,915
16 898 88,820,000 78,884,754
17 1,367 78,650,000 77,800,220
18 365 76,120,000 74,656,155
19 1,553 63,810,000 55,785,651
20 816 62,440,000 59,505,254
21 446 46,940,000 34,171,998
22 595 49,530,000 34,893,953
X 1,093 154,910,000 151,058,754
Y 125 57,740,000 22,429,293

Геном шимпанзе

Геном дрозофилы

Геном нематоды

Геном митохондрий

ДНК в митохондриях представлена циклическими молекулами, не образующими связь с гистонами, в этом отношении они напоминают бактериальные хромосомы.
У человека митохондриальная ДНК содержит 16,5 тыс. н.п., она полностью расшифрована. Найдено, что митохондральная ДНК различных объектов очень однородна, отличие их заключается лишь в величине интронов и нетранскрибируемых участков. Все митохондриальные ДНК представлены множественными копиями, собранными в группы, кластеры. Так в одной митохондрии печени крысы может содержаться от 1 до 50 циклических молекул ДНК. Общее же количество митохондриальной ДНК на клетку составляет около одного процента. Синтез митохондриальных ДНК не связан с синтезом ДНК в ядре. Так же как и у бактерий митохондральная ДНК собрана в отдельную зону – нуклеоид, его размер составляет около 0, 4 мкм в диаметре. В длинных митохондриях может быть от 1 до 10 нуклеоидов. При делении длинной митохондрии от нее отделяется участок, содержащий нуклеоид (сходство с бинарным делением бактерий). Количество ДНК в отдельных нуклеоидах митохондрий может колебаться в 10 раз в зависимости от типа клеток. При слиянии митохондрий может происходить обмен их внутренними компонентами.
рРНК и рибосомы митохондрий резко отличны от таковых в цитоплазме. Если в цитоплазме обнаруживаются 80s рибосомы, то рибосомы митохондрий растительных клеток принадлежат к 70s рибосомам (состоят из 30s и 50s субъединиц, содержат 16s и 23s РНК, характерные для прокариотических клеток), а в митохондриях клеток животных обнаружены более мелкие рибосомы (около 50s). В митоплазме на рибосомах идет синтез белков. Он прекращается, в отличие от синтеза на цитоплазматических рибосомах, при действии антибиотика хлорамфеникола, подавляющего синтез белка у бактерий.
На митохондриальном геноме синтезируются и транспортные РНК, всего синтезируется 22 тРНК. Триплетный код митохондриальной синтетической системы отличен от такового, используемого в гиалоплазме. Несмотря на наличие казалось бы всех компонентов, необходимых для синтеза белков, небольшие молекулы митохондриальной ДНК не могут кодировать все митохондриальные белки, только лишь их небольшую часть. Так ДНК размером 15 тыс.н.п. может кодировать белки с суммарным молекулярным весом около 6х105. В это же время суммарный молекулярный вес белков частицы полного дыхательного ансамбля митохондрии достигает величины около 2х106.

Рис. Относительные размеры митохондрий у различных организмов.

Интересны наблюдения за судьбой митохондрий в дрожжевых клетках. В аэробных условиях дрожжевые клетки имеют типичные митохондрии с четко выраженными кристами. При переносе клеток в анаэробные условия (например, при их пересеве или при перемещении в атмосферу азота) типичные митохондрии в их цитоплазме не обнаруживаются, и вместо них видны мелкие мембранные пузырьки. Оказалось, что в анаэробных условиях дрожжевые клетки не содержат полную дыхательную цепь (отсутствуют цитохромы b и a). При аэрации культуры наблюдается быстрая индукция биосинтеза дыхательных ферментов, резкое повышение потребления кислорода, а в цитоплазме появляются нормальные митохондрии.
Расселение людей на Земле

Геном пластид

Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов лизки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.
рис.
Образование шпилек в ДНК некоторых хлоропластов.

Так же как в случае хлоропластов мы вновь сталкиваемся с
существованием особой системы синтеза белка, отличной от
таковой в клетке.

Эти открытия вновь пробудили интерес к теории симбиотического
происхождения хлоропластов. Идея о том, что хлоропласты
возникли за счет объединения клеток-гетеротрофов с прокариотическими
синезелеными водорослями, высказанная на рубеже XIX и XX
вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое
подтверждение. В пользу этой теории говорит удивительное
сходство в строении хлоропластов и синезеленых водорослей,
сходство с основными их функциональными особенностями, и
в первую очередь со способностью к фотосинтетическим процессам.


рис. Состав генома пластид у арабидопсиса.

Известны многочисленные факты истинного эндосимбиоза синезеленых
водорослей с клетками низших растений и простейших, где
они функционируют и снабжают клетку-хозяина продуктами фотосинтеза.
Оказалось, что выделенные хлоропласты могут также отбираться
некоторыми клетками и использоваться ими как эндосимбионты.
У многих беспозвоночных (коловратки, моллюски), питающихся
высшими водорослями, которые они переваривают, интактные
хлоропласты оказываются внутри клеток пищеварительных желез.
Так, у некоторых растительноядных моллюсков в клетках найдены
интактные хлоропласты с функционирующими фотосинтетическими
системами, за активностью которых следили по включению С14О2.

Как оказалось, хлоропласты могут быть введены в цитоплазму
клеток культуры фибробластов мыши путем пиноцитоза. Однако
они не подвергались атаке гидролаз. Такие клетки, включившие
зеленые хлоропласты, могли делиться в течение пяти генераций,
а хлоропласты при этом оставались интактными и проводили
фотосинтетические реакции. Были предприняты попытки культивировать
хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать,
в них шел синтез РНК, они оставались интактными 100 ч, у
них даже в течение 24 ч наблюдались деления. Но затем происходило
падение активности хлоропластов, и они погибали.

Эти наблюдения и целый ряд биохимических работ показали,
что те черты автономии, которыми обладают хлоропласты, еще
недостаточны для длительного поддержания их функций и тем
более для их воспроизведения.

В последнее время удалось полностью расшифровать всю последовательность
нуклеотидов в составе циклической молекулы ДНК хлоропластов
высших растений. Эта ДНК может кодировать до 120 генов,
среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов,
гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько
белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы,
части белков комплексов цепи переноса электронов, одной
из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент
связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных
белков. Интересно, что сходный набор генов в ДНК хлоропластов
обнаружен у таких далеко отстоящих представителей высших
растений как табак и печеночный мох.

Основная же масса белков хлоропластов контролируется ядерным
геномом. Оказалось, что ряд важнейших белков, ферментов,
а соответственно и метаболические процессы хлоропластов
находятся под генетическим контролем ядра. Так, клеточное
ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов,
липидов, крахмала. Под ядерным контролем находятся многие
энзимы темновой стадии фотосинтеза и другие ферменты, в
том числе некоторые компоненты цепи транспорта электронов.
Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу
хлоропластов. Под контролем ядерных генов находится большая
часть рибосомных белков. Все эти данные заставляют говорить
о хлоропластах, так же как и о митохондриях, как о структурах
с ограниченной автономией.

Транспорт белков из цитоплазмы в пластиды происходит в принципе
сходно с таковым у митохондрий. Здесь также в местах сближения
внешней и внутренней мембран хлоропласта располагаются каналообразующие
интегральные белки, которые узнают сигнальные последовательности
хлоропластных белков, синтезированных в цитоплазме, и транспортируют
их в матрикс-строму. Из стромы импортируемые белки согласно
дополнительным сигнальным последовательностям могут включаться
в мембраны пластиды (тилакоиды, ламеллы стромы, внешняя
и внутренняя мембраны) или локализоваться в строме, входя
в состав рибосом, ферментных комплексов цикла Кальвина и
др.

Удивительное сходство структуры и энергетических процессов
у бактерий и митохондрий, с одной стороны, и у синезеленых
водорослей и хлоропластов – с другой, служит веским аргументом
в пользу теории симбиотического происхождения этих органелл.
Согласно этой теории, возникновение эукариотической клетки
прошло через несколько этапов симбиоза с другими клетками.
На первой стадии клетки типа анаэробных гетеротрофных бактерий
включили в себя аэробные бактерии, превратившиеся в митохондрии.
Параллельно этому в клетке-хозяине прокариотический генофор
формируется в обособленное от цитоплазмы ядро. Так могли
возникнуть гетеротрофные эукариотические клетки. Повторные
эндосимбиотические взаимоотношения между первичными эукариотическими
клетками и синезелеными водорослями привели к появлению
в них структур типа хлоропластов, позволяющих клеткам осуществлять
автосинтетические процессы и не зависеть от наличия органических
субстратов (рис. 236). В процессе становления такой составной
живой системы часть генетической информации митохондрий
и пластид могла изменяться, перенестись в ядро. Так, например
две трети из 60 рибосомных белков хлоропластов кодируется
в ядре и синтезируются в цитоплазме, а потом встраивается
в рибосомы хлоропластов, имеющие все свойства прокариотических
рибосом. Такое перемещение большой части прокариотических
генов в ядро привело к тому, что эти клеточные органеллы,
сохранив часть былой автономии, попали под контроль клеточного
ядра, определяющего в большей степени все главные клеточные
функции.

Принципы наследственности были обозначены впервые в 1900-х годах, когда естественные получили развитие и ввели в обиход (с полным определением) понятия геном человека и ген, в частности. Их исследование дало возможность ученым открыть секрет наследственности, и стало толчком для изучения наследственных болезней и их природы.

Вконтакте

Геном человека: общие понятия

Чтобы разобраться, что такое гены и процессы наследования организмом определенных свойств и качеств, следует знать и понимать термины и основные положения. Краткое изложение основных понятий даст возможность более глубоко вникнуть в данную тему.

Гены человека – это части цепи (дезоксирибонуклеиновая кислота в виде макромолекул), которая задает последовательность определенных полипептидов (семейства аминокислот) и несет основную наследственную информацию от родителей к детям.

Говоря простым языком, определенный ген содержит информацию о строении белка и несет ее от родительского организма к детскому, повторяя строение полипептидов и передавая наследственность.

Геном человека – это обобщающее понятие, обозначающее некоторое количество определённых генов. Впервые его ввел Ганс Винклер в 1920-м, однако спустя время несколько изменилось его изначальное значение.

Вначале он обозначал определенное количество хромосом (непарных и одинарных), а спустя время выяснилось, что в геноме 23 парных хромосомы и митохондриальная дезоксирибонуклеиновая кислота.

Генетическая информация – это данные которые заключены в ДНК, и несущие порядок построения белков в виде кода из нуклеотидов. Стоит также упомянуть, что подобная информация находится внутри и вне границ .

Гены человека исследовались на протяжении многих лет, за которые было претворено в жизнь множество экспериментов . До сих пор проводятся опыты, которые дают ученым новую информацию.

Благодаря последним исследованиям стало ясно, что не всегда четкая и последовательная структура наблюдается в дезоксирибонуклеиновых кислотах.

Существуют так называемые прерывистые гены, связи которых прерываются, что делает неверными все предыдущее теории о постоянстве этих частиц. В них время от времени происходят изменения, которые влекут за собой изменения и в структуре дезоксирибонуклеиновых кислот.

История открытия

Впервые научный термин был обозначен только в 1909 году ученым Вильгельмом Иогансеном, который был выдающимся ботаником в Дании.

Важно! В 1912 году появилось слово «генетика», которое стало названием целого отдела . Именно он занимается изучением генов человека.

Исследование частицы началось задолго до 20 века (данных в каком точно году нет), и складывалось из нескольких этапов:

  1. В 1868 году известный ученый Дарвин выдвинул гипотезу о пангенезе. В ней он описывал отделение геммулы. Дарвин считал, что геммула – это определенная часть клетки, из которой затем образовываются половые клетки.
  2. Через несколько лет Гуго де Фриз сформировал свою собственную теорию, отличную от дарвиновской, в которой описал процесс пангенеза внутри клеток. Он считал, что в каждой клетке есть частица, и она ответственна за некоторые свойства наследования вида. Он обозначил эти частицы как «пангены». Отличия двух гипотез заключается в том, что Дарвин считал геммулы частями тканей и внутренних органов, независимо от вида животного, а де Фриз представлял свои пангены как признаки наследования внутри конкретного вида.
  3. В. Иогансен в 1900 году определил наследственный фактор как ген, взяв вторую часть от термина, использованного де Фризом. Он использовал слово для определения «зачатка», той частицы, которая является наследственной. При этом ученый подчеркивал независимость термина от ранее выдвинутых теорий.

Изучением наследственного фактора уже достаточно давно занимались биологи и зоологи, но только с начала 20-го века генетика начала развиваться с огромной скоростью, открывая для людей тайны наследования.

Расшифровка генома человека

С того момента, как ученые открыли наличие в организме человека гена, они стали исследовать вопрос информации, заключенной в нем. Уже более 80 лет ученые пытаются расшифровать ее. На сегодняшний день они добились в этом значительных успехов, что дало возможность влиять на наследственные процессы и менять структуру клеток у следующего поколения.

История расшифровки ДНК состоит из нескольких определяющих моментов:

  1. 19 век – начало изучения нуклеиновых кислот.
  2. 1868 год – Ф. Мишер впервые выделяет из клеток нуклеин или ДНК.
  3. В середине 20 века О. Эвери и Ф. Гриффит выясняют при помощи опыта, проведенного на мышах, что за процесс трансформации бактерий отвечает именно нуклеиновая кислота.
  4. Первый человеком, кто показал миру ДНК стал Р. Франклин. Спустя несколько лет после открытия нуклеиновой кислоты он делает фотографию ДНК, случайным образом используя рентген при исследовании структуры кристаллов.
  5. В 1953 году дано точное определение принципу воспроизводства жизни у всех видов.

Внимание ! С того времени, как впервые общественности предоставили двойную спираль ДНК, произошло множество открытий, давших возможность понять природу ДНК и механизмы ее работы.

Человеком, который открыл ген , принято считать Грегора Менделя, впервые обнаружившего определенные закономерности в наследственной цепи.

А вот расшифровка ДНК человека произошла на основе открытия другого ученого – Фредерика Сенгера, который разработал методы чтения последовательностей белковых аминокислот и последовательность построения самой ДНК.

Благодаря работе множества ученых за три последних века были выяснены процессы формирования, особенности, и сколько генов находится в геноме человека.

В 1990 году начался международный проект «Геном человека», которым руководил Джеймс Уотсон. Его целью было выяснить, в какой последовательности выстраиваются нуклеотиды в ДНК, и выявить около 25 000 генов в человеке. Благодаря этому проекту человек должен был получить полное представление о формировании ДНК и расположению всех его составляющих частей, а также механизм построения гена.

Стоит уточнить, что программа не ставила своей задачей определить всю последовательность нуклеиновой кислоты в клетках, а лишь только некоторых областей. Началась она в 1990 году, но только в 2000 был выпущен черновик работы, а полное исследование завершено — в 2003 году . Исследование последовательности длиться до сих пор и 8% гетерохроматиновых областей все еще не определены.

Цели и задачи

Как любой научный проект, «Геном человека» ставил перед собой конкретные цели и задачи. Изначально ученые собирались выявить последовательности 3 млрд нуклеотидов и более. Затем отдельные группы исследователей выразили желание попутно определить также последовательность биополимеров, которая бывает аминокислотной или нуклеотидной. В итоге главные цели проекта выглядели следующим образом:

  1. Создать карту генома;
  2. Создать карту человеческих хромосом;
  3. Выявить последовательность формирования полипептидов;
  4. Сформировать методологию хранения и анализа собранной информации;
  5. Создать технологию, которая поможет в достижении всех указанных выше целей.

Данный список задач упускает не менее важную, но не такую очевидную – это изучение этических, правовых и социальных последствий подобных исследований. Вопрос наследственности может вызывать разногласия среди людей и повлечь серьезные конфликты, поэтому ученые поставили за цель обнаружить решения этих конфликтов до их возникновения.

Достижения

Наследственные последовательности – это уникальное явление , которое наблюдается в организме каждого человека в той или иной форме.

Проект достиг всех поставленных задач раньше, чем исследователи предполагали. К концу проекта они расшифровали около 99,99 % ДНК, хотя ученые ставили перед собой задачу секвенировать только 95% данных. Сегодня, несмотря на успех проекта, остаются все еще неисследованные участки дезоксирибонуклеиновых кислот.

В итоге исследовательской работы было определено сколько генов в организме человека (около 20-25 тыс. генов в геноме), и все они охарактеризованы:

  • количество;
  • расположение;
  • структурно-функциональные особенности.

Геном человека — исследования, расшифровка

Расшифровка человеческого генома

Вывод

Все данные будут подробно изложены в генетической карте человеческого организма. Претворение в жизнь такого сложного научного проекта дало не только колоссальные теоретические знания для фундаментальных наук, но и оказало невероятное влияние на само понимание наследственности. Это в свою очередь, не могло не отразиться на процессах предупреждения и лечения наследственных болезней.

Данные, полученные учеными, помогли ускорить другие молекулярные исследования и способствовать эффективному поиску генетической основы в заболеваниях, передающихся по наследству, и предрасположенности к ним. Результаты смогут повлиять на обнаружение соответствующих лекарств для профилактики множества заболеваний: атеросклероза, сердечной ишемии, болезней психического и онкологического характера.

МОСКВА, 4 июл — РИА Новости, Анна Урманцева . У кого геном больше? Как известно, одни существа имеют более сложное строение, чем другие, а раз все записано в ДНК, то и это тоже должно быть отражено в ее коде. Получается, человек с его развитой речью обязан быть сложнее маленького круглого червяка. Однако если сравнить нас с червяком по количеству генов, получится примерно то же самое: 20 тысяч генов Caenorhabditis elegans против 20-25 тысяч Homo sapiens.

Еще более обидными для "венца земных созданий" и "царя природы" являются сравнения с рисом и кукурузой — 50 тысяч генов по отношению к человеческим 25.

Впрочем, может, мы не то считаем? Гены — это "коробочки", в которые упакованы нуклеотиды — "буквы" генома. Может, посчитать их? У человека 3,2 миллиарда пар нуклеотидов. А вот японский вороний глаз (Paris japonica) — красивое растение с белыми цветами — имеет в своем геноме 150 миллиардов пар оснований. Получается, что человек должен быть устроен в 50 раз проще какого-то цветка.

А двоякодышащая рыба протоптер (двоякодышащая — обладающая как жаберным, так и легочным дыханием), получается, в 40 раз сложнее, чем человек. Может, все рыбы почему-то сложнее, чем люди? Нет. Ядовитая рыба фугу, из которой японцы готовят деликатес, имеет геном в восемь раз меньше, чем у человека, и в 330 раз меньше, чем у двоякодышащей рыбы протоптер.
Остается посчитать хромосомы — но это еще сильнее запутывает картину. Как может человек по количеству хромосом быть равным ясеню, а шимпанзе — таракану?


С этими парадоксами эволюционные биологи и генетики столкнулись давным-давно. Они были вынуждены признать, что размер генома, в чем бы мы его ни пытались посчитать, поразительно не связан со сложностью устройства организмов. Этот парадокс назвали "загадкой значений С", где С — это количество ДНК в клетке (C-value paradoх, точный перевод — "парадокс величины генома"). И все-таки какие-то корреляции между видами и царствами существуют.

© Иллюстрация РИА Новости. А.Полянина


© Иллюстрация РИА Новости. А.Полянина

Ясно, например, что эукариоты (живые организмы, клетки которых содержат ядро) имеют в среднем геномы больше, чем прокариоты (живые организмы, клетки которых не содержат ядро). Позвоночные животные имеют в среднем геномы больше, чем беспозвоночные. Однако тут есть исключения, которые никто пока не смог объяснить.

Генетики расшифровали ДНК растения, способного пережить атомный взрыв Ученые впервые расшифровали полный геном гинкго – древнейшего современного растения на Земле, первые представители которого появились еще до рождения первых динозавров, во времена звероящеров.

Были предположения, что размер генома связан с продолжительностью жизненного цикла организма. Некоторые ученые утверждали на примере растений, что многолетние виды имеют более крупные геномы, чем однолетние, причем обычно с разницей в несколько раз. А самые маленькие геномы принадлежат растениям-эфемерам, которые проходят полный цикл от рождения до смерти в течение нескольких недель. Этот вопрос сейчас активно обсуждается в научных кругах.

Поясняет ведущий научный сотрудник Института общей генетики им. Н. И. Вавилова Российской академии наук, профессор Техасского агромеханического университета и Гёттингенского университета Константин Крутовский: "Размер генома не связан с продолжительностью жизненного цикла организма! Например, есть виды внутри одного рода, которые имеют одинаковый размер генома, но могут различаться по продолжительности жизни в десятки, если не сотни раз. В целом есть связь размера генома с эволюционной продвинутостью и сложностью организации, но со множеством исключений. В основном размер генома связан с плоидностью (копийностью) генома (причем полиплоиды встречаются и у растений, и у животных) и количеством высокоповторяющейся ДНК (простые и сложные повторы, транспозоны и другие мобильные элементы)".

Генетики "воскресили" кукурузу возрастом в пять тысяч лет Генетики смогли извлечь ДНК из древнейших останков "культурной" кукурузы и восстановить ее геном, указавший на более древние корни любимого растения Никиты Сергеевича Хрущева, чем мы считали раньше.

Есть также ученые, которые придерживаются другой точки зрения на этот вопрос.

Всех хромосом и митохондриальной ДНК. В настоящее время эти данные активно используются по всему миру в биомедицинских исследованиях. Полное секвенирование выявило, что человеческий геном содержит 20-25 тыс. активных генов , что значительно меньше, чем ожидалось в начале проекта (порядка 100 тыс.) - то есть только 1,5 % всего генетического материала кодирует белки или функциональные РНК . Остальная часть является некодирующей ДНК, которую часто называют мусорной ДНК , но которая, как оказалось, играет важную роль в регуляции активности генов и формирования всего организма в процессе развития .

Особенности

Хромосомы

В геноме присутствует 23 пары хромосом : 22 пары аутосомных хромосом, а также пара половых хромосом X и Y. У человека мужской пол является гетерогаметным и определяется наличием Y хромосомы. Нормальные диплоидные соматические клетки имеют 46 хромосом .

Гены

Предварительные оценки предполагали наличие в геноме человека более 100 тысяч генов. По результатам проекта «Геном человека » количество генов, а точнее открытых рамок считывания , составило около 28 000 генов. В связи с усовершенствованием методов поиска (предсказания) генов предполагается дальнейшее уменьшение числа генов.

Число генов человека ненамного превосходит число генов у более простых организмов , например, круглого червя Caenorhabditis elegans или мухи Drosophila melanogaster . Так происходит из-за того, что в человеческом геноме широко представлен альтернативный сплайсинг . Альтернативный сплайсинг позволяет получить несколько различных белковых цепочек с одного гена. В результате человеческий протеом оказывается значительно больше протеома рассмотренных организмов. Большинство человеческих генов имеют множественные экзоны , и интроны часто оказываются значительно более длинными, чем граничные экзоны в гене.

Гены неравномерно распределены по хромосомам. Каждая хромосома содержит богатые и бедные генами участки. Эти участки коррелируют с хромосомными бендами (полосы поперёк хромосомы, которые видно в микроскоп) и с CG-богатыми участками. В настоящий момент значимость такого неравномерного распределения генов не вполне изучена.

Кроме генов, кодирующих белки, человеческий геном содержит тысячи РНК-генов , включая транспортную РНК (tRNA), рибосомную РНК, микроРНК и прочие не кодирующие белок РНК последовательности.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама