THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Гены, оставшиеся в ходе эволюции в «энергетических станциях клетки», помогают избежать проблем в управлении: если в митохондрии что-то сломается, она может починить это сама, не дожидаясь разрешения из «центра».

Наши клетки получат энергию с помощью особых органелл, называемых митохондриями, которых часто так и называют энергетическими станциями клетки. Внешне они выглядят как цистерны с двойной стенкой, причём внутренняя стенка очень неровная, с многочисленными сильными впячиваниями.

Клетка с ядром (окрашено синим) и митохондриями (окрашены красным). (Фото NICHD / Flickr.com.)

Митохондрии в разрезе, выросты внутренней мембраны видны как продольные внутренние полосы. (Фото Visuals Unlimited / Corbis.)

В митохондриях происходит огромное количество биохимических реакций, в ходе которых «пищевые» молекулы постепенно окисляются и распадаются, а энергия их химических связей запасается в удобной для клетки форме. Но, кроме того, у этих «энергетических станций» есть своя ДНК с генами, которую обслуживают собственные молекулярные машины, обеспечивающие синтез РНК с последующим синтезом белка.

Считается, что митохондрии в очень далёком прошлом были самостоятельными бактериями, которых ели какие-то другие одноклеточные существа (с большой вероятностью, археи). Но однажды «хищники» вдруг перестали переваривать проглоченных протомитохондрий, удерживая их внутри себя. Началось долгое притирание симбионтов друг к другу; в итоге те, кого проглотили, сильно упростились в строении и стали внутриклеточными органеллами, а их «хозяева» получили возможность за счёт более эффективной энергетики развиваться дальше, во всё более и более сложные формы жизни, вплоть до растений и животных.

О том, что митохондрии когда-то были самостоятельными, говорят остатки их генетического аппарата. Разумеется, если живёшь внутри на всём готовом, необходимость содержать собственные гены пропадает: ДНК современных митохондрий в человеческих клетках содержит всего 37 генов - против 20-25 тысяч тех, что содержатся в ядерной ДНК. Многие из митохондриальных генов за миллионы лет эволюции перебрались в клеточное ядро: белки, которые они кодируют, синтезируются в цитоплазме, а потом транспортируются в митохондрии. Однако тут же возникает вопрос: а почему 37 генов всё-таки остались там, где были?

Митохондрии, повторим, есть у всех эукариотических организмов, то есть и у животных, и у растений, и у грибов, и у простейших. Иан Джонстон (Iain Johnston ) из Бирмингемского университета и Бен Уильямс (Ben P. Williams ) из Института Уайтхеда проанализировали более 2 000 митохондриальных геномов, взятых у различных эукариот. С помощью особой математической модели исследователи смогли понять, какие из генов в ходе эволюции были более склонны оставаться в митохондриях.

Строение и функции митохондрий представляют собой довольно сложный вопрос. Наличие органеллы характерно почти для всех ядерных организмов – как для автотрофов (растений, способных к фотосинтезу), так и для гетеротрофов, которыми являются почти все животные, некоторые растения и грибы.

Главное предназначение митохондрий – окисление органических веществ и последующее использование освободившейся в результате этого процесса энергии. По этой причине органеллы имеют также и второе (неофициальное) название – энергетические станции клетки. Иногда их называют «пластидами катаболизма».

Что такое митохондрии

Термин имеет греческое происхождение. В переводе это слово означает «нить» (mitos), «зернышко» (chondrion). Митохондрии являются постоянными органоидами, которые имеют огромное значение для нормального функционирования клеток и делают возможным существование всего организма в целом.

«Станции» имеют специфическую внутреннюю структуру, которая изменяется в зависимости от функционального состояния митохондрии. Их форма может быть двух видов – овальная или продолговатая. Последняя нередко имеет ветвящийся вид. Число органоидов в одной клетке колеблется от 150 до 1500.

Особый случай – половые клетки. В сперматозоидах присутствует всего лишь одна спиральная органелла, в то время как женских гаметах содержится в сотни тысяч больше митохондрий. В клетке органоиды не зафиксированы в одном месте, а могут передвигаться по цитоплазме, совмещаться друг с другом. Их размер составляет 0,5 мкм, длина может достигать 60 мкм, в то время как минимальный показатель – 7 мкм.

Определить размер одной «энергетической станции» – непростая задача. Дело в том, что при рассмотрении в электронный микроскоп на срез попадает только часть органеллы. Случается так, что спиральная митохондрия имеет несколько сечений, которые можно принять за отдельные, самостоятельные структуры.

Только объемное изображение позволит выяснить точное клеточное строение и понять, идет речь о 2-5 отдельных органоидах или же об одной, имеющей сложную форму митохондрии.

Особенности строения

Оболочка митохондрии состоит из двух слоев: наружного и внутреннего. Последний включает в себя различные выросты и складки, которые имеют листовидную и трубчатую форму.

Каждая мембрана имеет особенный химический состав, определенное количество тех или иных ферментов и конкретное предназначение. Наружную оболочку от внутренней отделяет межмембранное пространство толщиной 10-20 нм.

Весьма наглядно выглядит строение органеллы на рисунке с подписями.

Схема строения митохондрии

Посмотрев на схему строения, можно сделать следующее описание. Вязкое пространство внутри митохондрии называется матриксом. Его состав создает благоприятную среду для протекания в ней необходимых химических процессов. В его составе присутствуют микроскопические гранулы, которые содействуют реакциям и биохимическим процессам (например, накапливают ионы гликогена и других веществ).

В матриксе находятся ДНК, коферменты, рибосомы , т-РНК, неорганические ионы. На поверхности внутреннего слоя оболочки располагаются АТФ-синтаза и цитохромы. Ферменты способствуют таким процессам, как цикл Кребса (ЦТК), окислительное фосфорилирование и т. д.

Таким образом, главная задача органоида выполняется как матриксом, так и внутренней стороной оболочки.

Функции митохондрий

Предназначение «энергетических станций» можно охарактеризовать двумя основными задачами:

  • выработка энергии: в них осуществляются окислительные процессы с последующим выделением молекул АТФ;
  • хранение генетической информации;
  • участие в синтезе гормонов, аминокислот и других структур.

Процесс окисления и выработки энергии проходят в несколько стадий:

Схематичный рисунок синтеза АТФ

Стоит отметить: в результате цикла Кребса (цикл лимонной кислоты) не образуются молекулы АТФ, происходит окисление молекул и выделение углекислого газа. Это промежуточный этап между гликолизом и электронтранспортной цепью.

Таблица «Функции и строение митохондрий»

От чего зависит число митохондрий в клетке

Превалирующее число органоидов скапливается рядом с теми участками клетки, где возникает необходимость в энергетических ресурсах. В частности, большое количество органелл собирается в зоне нахождения миофибрилл, которые являются частью мышечных клеток, обеспечивающих их сокращение.

В мужских половых клетках структуры локализуются вокруг оси жгутика – предполагается, что потребность в АТФ обусловлена постоянным движением хвоста гаметы. Точно так же выглядит расположение митохондрий у простейших, которые для передвижения используют специальные реснички – органеллы скапливаются под мембраной у их основания.

Что касается нервных клеток, то локализация митохондрий наблюдается вблизи синапсов, через которые передаются сигналы нервной системы. В клетках, синтезирующих белки, органеллы скапливаются в зонах эргастоплазмы – они поставляют энергию, которая обеспечивает данный процесс.

Кто открыл митохондрии

Свое название клеточная структура обрела в 1897-1898 годах благодаря К. Бренду. Связь процессов клеточного дыхания с митохондриями сумел доказать Отто Вагбург в 1920 году.

Заключение

Митохондрии являются важнейшей составляющей живой клетки, выступая в роли энергетической станции, которая производит молекулы АТФ, обеспечивая тем самым процессы клеточной жизнедеятельности.

Работа митохондрий основана на окислении органических соединений, в результате чего происходит генерация энергетического потенциала.

Покрыты двумя мембранами. Наружная мембрана гладкая, внутренняя имеет выросты внутрь - кристы, они увеличивают площадь внутренней мембраны, чтобы расположить на ней как можно больше ферментов клеточного дыхания.

Внутренняя среда митохондрии называется матрикс. В нем находятся кольцевая ДНК и мелкие (70S) рибосомы, за счет них митохондрии самостоятельно делают для себя часть белков, поэтому их называют полуавтономными органоидами. (Теория симбиогенеза считает, что раньше митохондрии и пластиды были свободными бактериями, которые были поглощены крупной клеткой, но не переварены.)

Функция: митохондрии принимают участие в клеточном дыхании (являются «энергетическими станциями клетки»).

Кислородное дыхание (средняя сложность)

1. Гликолиз
Происходит в цитоплазме. Глюкоза окисляется до двух молекул пировиноградной кислоты (ПВК), при этом выделяется энергия, которая запасается в 2 АТФ и богатых энергией электронов на переносчиках.

2. Окисление ПВК в матриксе митохондрий
ПВК окисляется полностью до углекислого газа, при этом выделяется энергия, которая запасается в 2 АТФ и богатых энергией электронов на переносчиках.

3. Дыхательная цепь
Происходит на внутренней мембране митохондрий. Богатые энергией электроны, полученные в предыдущих стадиях, отдают свою энергию, при этом образуется 34 АТФ.

(от греч. mitos - нить, chondrion - зернышко, soma - тельце) представляют собой гранулярные или нитевидные органоиды ( рис. 1, а). Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В таких клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом. Особенно хорошо митохондрии выявляются на препаратах, окрашенных различными способами. Размеры митохондрий непостоянны у разных видов, так же изменчива их форма. Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), но длина колеблется, достигая у нитчатых форм 7-60 мкм.

Митохондрии независимо от их величины и формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами ( рис. 1, б), у них четыре субкомпартмента: митохондриальный матрикс , внутренняя мембрана , мембранное пространство и внешняя мембрана , обращенная к цитозолю. Внешняя мембрана отделяет ее от остальной цитоплазмы. Толщина внешней мембраны около 7 нм, она не связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружную мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс , или митоплазму . Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные выпячивания (складки) внутрь митохондрий. Такие выпячивания ( кристы , рис. 27) чаще всего имеют вид плоских гребней. Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ.

Митохондрии специализируются на синтезе АТФ путем транспорта электронов и окислительного фосфорилирования. (рис 21-1). Хотя они имеют свою собственную ДНК и аппарат белкового синтеза, большинство их белков кодируется клеточной ДНК и поступает из цитозоля. Более того, каждый поступивший в органеллу белок должен достичь определенного субкомпартмента, в котором он функционирует.

Митохондрии - это "энергетические станции" эукариотических клеток. В кристы встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку извне, в энергию молекул АТФ. АТФ - "универсальная валюта", которой клетки расплачиваются за все свои энергетические расходы. Складчатость внутренней мембраны увеличивает поверхность, на которой размещаются ферменты, синтезирующие АТФ. Количество крист в митохондрии и количество самих митохондрий в клетке тем больше, чем больше энергетических трат осуществляет данная клетка. В летательных мышцах насекомых каждая клетка содержит несколько тысяч митохондрий. Меняется их количество и в процессе индивидуального развития (онтогенеза): в молодых эмбриональных клетках они более многочисленны, чем в клетках стареющих. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях.

Расстояние между мембранами в кристе составляет около 10-20 нм. У простейших, одноклеточных водорослей в некоторых клетках растений и животных выросты внутренней мембраны имеют вид трубочек диаметром около 50 нм. Это так называемые трубчатые кристы.

Митохондриальный матрикс гомогенен и имеет более плотную консистенцию, чем окружающая митохондрию гиалоплазма. В матриксе выявляются тонкие нити ДНК и РНК, а также митохондриальные рибосомы, на которых синтезируются некоторые митохондриальные белки. С помощью электронного микроскопа на внутренней мембране и кристах со стороны матрикса можно увидеть грибовидные образования - АТФ-сомы. Это ферменты, образующие молекулы АТФ. Их может быть до 400 на 1 мкм.

Немногие белки, которые кодируются собственным геномом митохондрий, расположены в основном во внутренней мембране. Они обычно образуют субъединицы белковых комплексов, другие компоненты которых кодируются ядерными генами и поступают из цитозоля. Образование таких гибридных агрегатов требует сбалансирования синтеза этих двух типов субъединиц; каким образом координируется синтез белка на рибосомах разных типов, разделенных двумя мембранами, остается загадкой.

Обычно митохондрии располагаются в местах, где необходима энергия для любых жизненных процессов. Возник вопрос, каким образом транспортируется в клетке энергия - путем ли диффузии АТФ и нет ли в клетках структур, исполняющих роль электрических проводников, которые могли бы энергетически объединять отдаленные друг от друга участки клетки. Гипотеза заключается в том, что разность потенциалов в определенной области мембраны митохондрий передается вдоль нее и превращается в работу в другой области той же мембраны [ Скулачев В.П., 1989 ].

Как представлялось, подходящими кандидатами на эту же роль могли быть мембраны самих митохондрий. Кроме того, исследователей интересовали взаимодействие в клетке множественных митохондрий друг с другом, работа всего ансамбля митохондрий, всего хондриома - совокупности всех митохондрий.

Митохондрии характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки.

Митохондриальные заболевания — неоднородная группа наследственных заболеваний, которые вызваны структурными, генетическими или биохимическими дефектами митохондрий, приводящих к нарушениям энергетических функций в клетках эукариотических организмов. У человека при митохондриальных заболеваниях в первую очередь поражается мышечная и нервная система.

МКБ-9 277.87
MeSH D028361
DiseasesDB 28840

Общие сведения

Митохондриальные заболевания как отдельный тип патологий выделены в конце ХХ века после выявления мутации генов, которые ответственны за синтез митохондриальных белков.

Открытые в 1960-х годах мутации митохондриальной ДНК и вызванные этими мутациями болезни более изучены, чем заболевания, вызванные нарушениями ядерно-митохондриальных взаимодействий (мутации ядерной ДНК).

По имеющимся на сегодняшний день данным не менее 50 известных медицине заболеваний связано с митохондриальными нарушениями. Распространенность этих заболеваний составляет 1:5000.

Виды

Митохондрии являются уникальными клеточными структурами, которые обладают собственным ДНК.

Согласно мнению многих исследователей, митохондрии – потомки архебактерий, превратившиеся в эндосимбионтов (микроорганизмы, которые живут в организме «хозяина» и приносят ему пользу). В результате внедрения в эукариотические клетки они постепенно утратили или передали ядру эукариотического хозяина большую часть генома, и это учитывается при классификации. Также принимается во внимание и участие дефектного белка в биохимических реакциях окислительного фосфорилирования, которое позволяет запасать энергию в виде АТФ в митохондриях.

Единой общепринятой классификации не существует.

Обобщенная современная классификация митохондриальных заболеваний выделяет:

  • Заболевания, которые возникают при мутациях митохондриальной ДНК. Дефекты могут быть вызваны точечными мутациями белков, тРНК или рРНК (обычно наследуются по материнской линии), или структурными перестановками – спорадическими (нерегулярными) дупликациями и делециями. Это первичные митохондриальные заболевания, к которым относятся наследственные ярко выраженные синдромы — синдром Кернса — Сейра, синдром Лебера, синдром Пирсона, синдром NAPR, синдром MERRF и др.
  • Заболевания, которые вызваны дефектами ядерной ДНК. Ядерные мутации могут нарушать функции митохондрий – окислительное фосфолирование, работу электронтранспортной цепи, утилизацию или транспорт субстратов. Также мутации ядерной ДНК вызывают дефекты ферментов, которые необходимы для обеспечения циклического биохимического процесса — цикла Кребса, являющегося ключевым этапом дыхания всех использующих кислород клеток и центром пересечения в организме метаболических путей. К данной группе относят гастроинтестинальное митохондриальное заболевание, синдром Люфта, атаксию Фридриха, синдром Альперса, болезни соединительной ткани, диабет и др.
  • Заболевания, которые возникают в результате нарушений в ядерной ДНК и вызванных этими нарушениями вторичных изменений в митохондриальной ДНК. Вторичными дефектами являются тканеспецифические делеции или дупликации митохондриальной ДНК и уменьшение количества копий митохондриальной ДНК или их отсутствие в тканях. В данную группу входят печеночная недостаточность, синдром Де Тони-Дебре-Фанкони и др.

Причины развития

Митохондриальные заболевания вызываются дефектами находящихся в клеточной цитоплазме органелл — митохондрий. Основной функцией этих органелл является выработка энергии из поступающих в цитоплазму продуктов клеточного обмена веществ, которая происходит благодаря участию около 80 ферментов. Выделяющаяся энергия запасается в виде молекул АТФ, а затем преобразуется в механическую или биоэлектрическую энергию и т.д.

Причины митохондриальных заболеваний – нарушение выработки и аккумуляции энергии из-за дефекта одного из ферментов. В первую очередь при хроническом дефиците энергии страдают самые энергозависимые органы и ткани – ЦНС, сердечная мышца и скелетные мышцы, печень, почки и эндокринные железы. Хронический дефицит энергии вызывает патологические изменения в данных органах и провоцирует развитие митохондриальных заболеваний.

Этиология митохондриальных заболеваний имеет свою специфику – большинство мутаций происходит в генах митохондрий, поскольку в этих органеллах интенсивно протекают окислительно-восстановительные процессы и образуются повреждающие ДНК свободные радикалы. У митохондриальной ДНК механизмы восстановления повреждений несовершенны, так как ее не защищают белки-гистоны. В результате дефектные гены накапливаются быстрее в 10-20 раз, чем в ядерной ДНК.

Мутировавшие гены передаются при делении митохондрий, поэтому даже в одной клетке находятся органеллы с разным вариантом генома (гетероплазмия). При мутации митохондриального гена у человека наблюдается смесь мутантной и нормальной ДНК в любом соотношении, поэтому даже при наличии одинаковой мутации митохондриальные заболевания у людей выражены в разной степени. Наличие 10% дефектных митохондрий не оказывает патологического влияния.

Мутация может длительное время не проявляться, так как нормальные митохондрии компенсируют на начальном этапе недостаточность функции дефектных митохондрий. Со временем дефектные органеллы накапливаются, и проявляются патологические признаки заболевания. При раннем манифесте течение болезни более тяжелое, прогноз может быть негативным.

Митохондриальные гены передаются только от матери, так как содержащая эти органеллы цитоплазма присутствует в яйцеклетке и практически отсутствует в сперматозоидах.

Митохондриальные заболевания, которые вызваны дефектами ядерной ДНК, передаются благодаря аутосомно-рецессивному, аутосомно-доминантному или Х-сцепленному типу наследования.

Патогенез

Геном митохондрий отличается от генетического кода ядра и больше напоминает код бактерий. У человека геном митохондрий представлен копиями небольшой кольцевой молекулы ДНК (их число колеблется от 1 до 8). Каждая митохондриальная хромосома кодирует:

  • 13 белков, которые отвечают за синтез АТФ;
  • рРНК и тРНК, которые участвуют в происходящем в митохондриях синтезе белка.

Около 70 генов белков митохондрий кодируются генами ядерной ДНК, благодаря чему осуществляется централизованная регуляция функций митохондрий.

Патогенез митохондриальных заболеваний связан с процессами, которые происходят в митохондриях:

  • С транспортом субстратов (органической кетокислоты пирувата, которая является конечным продуктом метаболизма глюкозы, и жирных кислот). Происходит под воздействием карнитин-пальмитоил-трансферазы и карнитина.
  • С окислением субстратов, которое происходит под влиянием трех ферментов (пируватдегидрогеназы, липоат-ацетилтрансферазы и липоамид-дегидрогеназы). В результате процесса окисления образуется ацетил-КоА, участвующий в цикле Кребса.
  • С циклом трикарбоновых кислот (цикл Кребса), который не только занимает центральное место в энергетическом обмене, но и поставляет промежуточные соединения для синтеза аминокислот, углеводов и других соединений. Половина стадий цикла является окислительными процессами, в результате которых выделяется энергия. Эта энергия аккумулируется в виде восстановленных коферментов (молекул небелковой природы).
  • С окислительным фосфорилированием. В результате полного разложения пирувата в цикле Кребса образуются коферменты NAD и FAD, участвующие в переносе электронов в дыхательную цепь переноса электронов (ЭТЦ). ЭТЦ контролируется митохондриальным и ядерным геномом и осуществляет транспорт электронов при помощи четырех мультиферментных комплексов. Пятый мультиферментный комплекс (АТФ-синтаза) катализирует синтез АТФ.

Патология может возникать как при мутациях генов ядерной ДНК, так и при мутациях генов митохондрий.

Симптомы

Митохондриальные заболевания отличаются значительным разнообразием симптомов, поскольку в патологический процесс вовлекаются разные органы и системы.

Нервная и мышечная системы являются самыми энергозависимыми, поэтому от дефицита энергии они страдают в первую очередь.

К симптомам поражения мышечной системы относятся:

  • снижение или потеря возможности выполнять двигательные функции в связи со слабостью мышц (миопатический синдром);
  • гипотония;
  • боли и болезненные спазмы мышц (крампи).

Митохондриальные заболевания у детей проявляются в головной боли, рвоте и слабости мышц после физической нагрузки.

Поражение нервной системы проявляется в:

  • задержке психомоторного развития;
  • утрате приобретенных ранее навыков;
  • наличии судорог;
  • наличии периодического появления апноэ и ;
  • повторных коматозных состояниях и смещении кислотно-щелочного баланса организма (ацидоз);
  • нарушениях походки.

У подростков наблюдаются головные боли, периферические нейропатии (онемение, утрата чувствительности, паралич и др.), инсультоподобные эпизоды, патологические непроизвольные движения, головокружение.

Для митохондриальных заболеваний также характерны поражения органов чувств, которые проявляются в:

  • атрофии зрительных нервов;
  • птозе и наружной офтальмоплегии;
  • катаракте, помутнении роговицы, пигментной дегенерации сетчатки;
  • дефекте поля зрения, которое наблюдается у подростков;
  • снижении слуха или нейросенсорной глухоте.

Признаками митохондриальных заболеваний являются и поражения внутренних органов:

  • кардиомиопатия и блокады сердца;
  • патологическое увеличение печени, нарушения ее функций, печеночная недостаточность;
  • поражения проксимальных почечных канальцев, сопровождающиеся повышенным выведением глюкозы, аминокислот и фосфатов;
  • приступы рвоты, дисфункция поджелудочной железы, диарея, целиакоподобный синдром.

Наблюдается также макроцитарная анемия, при которой увеличен средний размер эритроцитов, и панцитопения, для которой характерно снижение количества всех видов клеток крови.

Поражение эндокринной системы сопровождается:

  • задержкой роста и нарушением полового развития;
  • гипогликемией и диабетом;
  • гипоталамо-гипофизарным синдромом с дефицитом СТГ;
  • дисфункцией щитовидной железы;
  • гипотиреозом, нарушением обмена фосфора и кальция и .

Диагностика

Диагностика митохондриальных заболеваний основывается на:

  • Изучении анамнеза. Поскольку все симптомы митохондриальных заболеваний не являются специфическими, диагноз предполагается при комбинации трех и более симптомов.
  • Физикальном обследовании, которое включает тесты на выносливость и силу.
  • Неврологическом обследовании, включающем проверку зрения, рефлексов, речи и познавательных способностей.
  • Специализированных пробах, которые включают наиболее информативный тест – мышечную биопсию, а также фосфорную магнитно-резонансную спектроскопию и др. неинвазивные методы.
  • КТ и МРТ, которые позволяют выявить признаки повреждения головного мозга.
  • ДНК-диагностике, которая позволяет выявить митохондриальные заболевания. Не описанные ранее мутации определяются методом прямого секвенирования мтДНК.

Лечение

Эффективное лечение митохондриальных заболеваний активно разрабатывается. Внимание уделяется:

  • Увеличению эффективности энергетического обмена при помощи тиамина, рибофлавина, никотинамида, коэнзима Q10 (показывает хороший результат при синдроме MELAS), витамина С, цитохрома С и т.д.
  • Профилактике повреждения мембран митохондрий свободными радикалами, для которой используются a-липоевая кислота и витамин Е (антиоксиданты), а также мембранопротекторы (цитиколин, метионин и др.).

Лечение также включает применение креатина моногидрата как альтернативного источника энергии, снижение уровня молочной кислоты и физические упражнения.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама